Что из себя представляют вакуумные печи | Новости недвижимости и строительство от Невашин

Что из себя представляют вакуумные печи

Скорее всего, на сегодняшний день, мало кого можно удивить высокотехнологичным оборудованием для термообработки — вакуумными печами. Тем более, что технологии вакуумной термической и химико-термической обработки до блеска «отполированы» во многих статьях, книгах и журналах. Тем не менее состав вакуумных линий и печей, при всей своей гибкости и уникальности использования, остается достаточно сложным, вызывает трудности при эксплуатации и имеет ряд недостатков. В данной статье мы кратко постараемся обрисовать все эти преимущества и недостатки устроиства и использования вакуумных печей для термической обработки металлических изделий.

ПРЕИМУЩЕСТВА ВАКУУМНЫХ ПЕЧЕЙ ДЛЯ ТЕРМООБРАБОТКИ

Итак, сначала кратко опишем преимущества использования вакуумного оборудования, т. к. на эту тему много всего понаписано и останавливаться здесь особо не хочется:

Практически нулевое окисление и отсутствие обезуглероживания обрабатываемых изделий
Минимальные коробления при закалке (как в масле, так и в газе)
Высокая гибкость и встраивоемость оборудования в технологические цепочки как штучного, так и крупносерийного производства
Снижение времени термической и химико-термической обработки
Быстрая смена режима обработки
Холодные стенки печей
Снижение энергетических затрат за счет работы оборудования с кнопки
Некоторые установки позволяют имитировать процессы нормализации и отжига стали
Легость ремонта и доступность обслуживания печей
Самая высокая степень автоматизации среди печного нагревательного оборудования

НЕДОСТАТКИ ВАКУУМНЫХ ПЕЧЕЙ

Мы перечислили основные преимущества использования печи вакуумной, которые возможно, в большинстве случаев, будут иметь большее значение по сравнению с нижеперечисленными недостатками.

Основной недостаток вакуумного оборудования — его высокая стоимость. На это значение в большей мере влияет стоимость материалов, используемых при производстве печей. Очень часто при изготовлении рабочих камер, нагревательных элементов и разных вставок используются дорогостоящие вольфрам и молибден. Частично проблему высокой стоимости удается решить при помощи замены дорогих сплавов более дешевыми материалами из углерода и кремния.

Еще, по сравнению с атмосферными печами, вакуумное оборудование имеет много периферийных устройств: вакуумные насосы, систему водоохлаждения корпуса и двигателей, сосуды высокого давления для промежуточного хранения газа-заполнителя и закалочного газа, сосуды для хранения сред для химико-термической обработки и др. Все это также вносит ощутимый вклад в структуру стоимости оборудования.

Если говорить о вспомогательном оборудовании, то стоит отметить, что в большинстве случаев при закалке газом используется азот, который нужно откуда-то брать. Из воздуха он может взяться только в случае его (воздуха) переработки. Но возможные и другие варианты:

Покупать сжиженый азот и при помощи испарения получать технологический газообразный азот
Покупать газообразный готовый азот в балонах
Наилучший, более экономичный вариант газоснабжения зависит от фактического фонда времени работы оборудования. Нужно только добавить, что при вакуумной термообработке необходимо использовать азот с чистотой минимум 99,99%, а это дополнительное оборудование для очистки и соответственно дополнительные капитальные затраты.

Возможно, что все перечисленные технико-экономические затраты окупятся качеством термообработки и снижением энергетических затрат (в сравнении с атмосферными печами непрерывного действия). Но в вопросах финансовой целесообразности использования вакуумных печей может помочь только глубокий экономический анализ для конкретного объекта производства.

Также возможно проявление некоторых технологических издержек вакуумной термообработки с применением азота. В зарубежных журналах по металловедению, иногда публикуются статьи, в которых авторы пишут, что азот при конвекционном нагреве (до 600 градусов) и при закалке может взаимодействовать с легирующими элементами сталей. В большей степени это касается сталей с высоким содержанием хрома: ШХ15, 0Х18Н10Т, 40Х13 и т. д. В этом случае на поверхности деталей может образоваться хрупкая нитридная составляющая, которая может отслоиться от основного металла.